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Appendix A. Proof of Proposition 3

Consider a policy parameter θ∗ such that Φ(x, θ∗) ≥ maxθ∈ΘΦ(x, θ)− λ. For any θi ∈ Θi,

V i(x, θ∗,i, θ∗,−i)− V i(x, θi, θ∗,−i) ≥ Φ(x, θ∗,i, θ∗,−i)− Φ(x, θi, θ∗,−i)− α

≥ −λ− α,

where first inequality is due to (2) and the second inequality is because θ∗ maximizes Φ. The proof
follows using the definition of Nash equilibrium (Definition 1).

Appendix B. Description of Single-agent Racing Line

Race drivers follow a racing line for specific maneuvers. This line can be used as a reference
path by the motion planner to assign time-optimal trajectories while avoiding collision. The racing
line is minimum-time or minimum-curvature. They are similar, but the minimum-curvature path
additionally allows the highest cornering speeds given the maximum legitimate lateral acceleration
Heilmeier et al. (2020).

There are many proposed solutions to finding the optimal racing line, including nonlinear opti-
mization Rosolia and Borrelli (2020); Heilmeier et al. (2020), genetic algorithm-based search Vesel
(2015) and Bayesian optimization Jain and Morari (2020). However, for our work, we calculate the
minimum-curvature optimal line, which is close to the optimal racing line as proposed by Heilmeier
et al. (2020). The race track is represented by a sequence of tuples (xi,yi,wi), i ∈ {0, ..., N − 1},
where (xi,yi) denotes the coordinate of the center location and wi denotes the lane width at the i-th
point. The output racing line consists of a tuple of seven variables: coordinates x and y, longitudinal
displacement s, longitudinal velocity vx, acceleration ax, heading angle ψ, and curvature κ. It is
obtained by minimizing the following cost:

min
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κ2i (n)
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[
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2
+
wveh

2
,
wi

2
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2

] (4)

where the vehicle width is wveh, and ηi is the lateral displacement with respect to the reference
center line.

To create a velocity profile, we need to consider the vehicle’s constraints on both longitudinal
and lateral acceleration Heilmeier et al. (2020). Our approach involves generating a library of veloc-
ity profiles, each tailored to specific lateral acceleration limits determined by the friction coefficients
for the front (µf ) and rear (µr) tires, as well as the vehicle’s mass (m) and the gravitational constant
(g). In particular, we produce a set of velocity profiles covering a range of maximum lateral forces
corresponding to the friction µeff within the interval [µmin, µmax]. This library allows us to retrieve
a velocity profile that matches a given value of µ. Interpolation is necessary when we encounter a
friction value that falls within the valid range but is not explicitly present in the library.

An example of a racing line calculated for the racetrack used in our numerical study in Section
4 is shown in Figure 4.
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Figure 4: Track and the starting position regions

Appendix C. Dynamic Bicycle Model

For any car i, we denote its mass by mi, its moment of inertia in the vertical direction about the
center of mass by Iiz , the distance between the center of mass (COM) and its front wheel by lif , and
the distance from the COM to the rear wheel lir. Also, κit denotes the inverse of radius of curvature
of the track at pix,t. Using these notations, the dynamics of car i is defined below:
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where (i) vix,t = 1
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2 is the longitudinal force on the rear tire at time t. Here, C1 and C2 are parameters
that govern the longitudinal force generated on the car in response to the throttle command, while
C3 and C4 are parameters that account for the friction and drag forces acting on the car; (iv)
F i
f,y,t = Df sin(Cf tan

−1(Bfα
i
f,t)) is the lateral force on the front tire depending on the slipping

angle αi
f,t, which is given by αi

f,t = δit − tan−1
(
ωi
tlf+ṽiy,t
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)
. Here Bf , Cf , Df are the parameters

of Pacejka tire model; and (v) F i
r,y,t = Dr sin(Cr tan
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i
r,t)) is the lateral force on the rear tire

depending on the slipping angle αi
r,t, which is given by αi

r,t = tan−1
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)
. Here Br, Cr, Dr

are the parameters of Pacejka tire model.
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Appendix D. Hyperparameters

D.1. Network architecture

We use a simple feed-forward deep neural network with ReLU activation except for the last layer to
represent the value function and the potential function. The network for value function consists of 3
hidden layers with (128, 128, 64) hidden features on each layer. The network for potential function
consists of 3 hidden layers with (384, 384, 192) hidden features on each layer.

D.2. Training

We use a learning rate of 0.0001 and train for 50000 epochs (both value functions and potential
function). Each race consists of 500 time steps with dt = 0.1s, hence 50s race.

Appendix E. Self-play RL training

We use standard PPO training parameters as available in stable baselines3 with batch size 1024,
number of epochs 5, learning rate 0.0005, γ = 0.99 and 8 environments in parallel. The observation
used is the same as the joint state input used for our work for fair comparison. The reward design
used is also the same as the utility used in our work. We train for 100K time-steps for each iteration
of self-play RL where we switch agents for training for total of 99 times i.e. 33 cycles of training
for 3 agents

Appendix F. Iterated Best Response (IBR) hyperparameters

We use N = 6 iterations for iterated best response with the same utility as the one used in our work
and with horizon length of 2s with 20 time-steps of length dt = 0.1s. The solve time with the
following parameters is 0.1s which is comparable to the compute time required by our algorithm

Appendix G. Table of Notations

Notation Description
xi State vector of car i, including position, velocity, and angular velocity.
pix, p

i
y Longitudinal and lateral positions of car i in the global frame.

ϕi Orientation of car i in the global frame.
vix, v

i
y Longitudinal and lateral velocities of car i in the body frame.

ωi Angular velocity of car i in the global frame.
ui = (di, δi) Control input for car i, where di is the throttle and δi is the steering angle.
di Throttle input of car i.
δi Steering angle of car i.
dmin, dmax Minimum and maximum throttle limits for car i.
δmin, δmax Minimum and maximum steering angle limits for car i.
mi Mass of car i.
Iiz Moment of inertia of car i in the vertical direction about the center of mass.
lif Distance from the center of mass to the front wheel of car i.
lir Distance from the center of mass to the rear wheel of car i.
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Notation Description
F i
r,x,t Force applied to the rear wheel of car i in the longitudinal direction at time t.
F i
r,y,t Force applied to the rear wheel of car i in the lateral direction at time t.
F i
f,y,t Force applied to the front wheel of car i in the lateral direction at time t.

∆t Time step for the simulation.
γ Discount factor in the utility function.
xt State of the system at time t.
ui
t Control input of car i at time t.
ωi
t Angular velocity of car i at time t.
θi Parameter of car i’s policy.
Θi Set of possible parameters for car i’s policy.
Πi Set of possible strategies for car i.
Π Set of joint strategies for all players (cars).
ϵ The tolerance used in the definition of ϵ-Nash equilibrium.
V i(x, θi, θ−i) The expected long-run utility of car i given the state x and strategy profile θ.
θ∗ The ϵ-Nash equilibrium strategy profile.
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